LOW HEAD HYDRO TURBINES

Joule Centre Annual Conference
Small Hydro Power Schemes in the North West of England: Overcoming the Barriers
3rd April 2008 at Rheged Centre
Dieter Krompholz / Sales / Compact Hydro
Agenda

- Definition - low head (application range)
- Special aspects of low head applications
- Risks of low head applications
- Possible turbine types for low head application
- Fish-friendly turbine concept – some aspects
- Examples and references of low head applications
- Summary
Definition - low head (application range)

- Heads - approx. 2 to 35 m
- Flows - approx. 0.3 to 100 m³/s

- General turbine types
 - Axial turbine
 - OR
 - Radial turbine – Francis
 (for “higher” low heads)
Special aspects of low head applications

- „Flat“ landscapes
- often running river plant
- very often a dam / weir needed
- „polluted“ water (e.g. grass, algea, „garbage“, …)
- old mill places or similar
- generally low speed turbines > „expensive“ generators if direct-coupled
- ecological aspects > e.g. fish friendliness
 - Fish ladder
 - fish-friendly turbine concept
Risks of low head applications

- the lower the head the more important the design of the intake & draft tube side is
 - „incorrect“ design can destroy fairly easily the net head and performance
 - how (flow, velocity) the water streams in and out the turbine is essential
 - use an experienced consultant and turbine supplier
 - investigate before concreting
Risks of low head applications

- power loss due to algae and grass
 - the smaller the runner diameter the higher the risk
 - use a good trash rake (and cleaner)
 - can be optimised with a „flush“-control
Possible turbine types for low head application - AXIAL

- Axial type turbines
 - heads approx. 2 to 35 m
 - flows approx. 3 to 100 m³/s
 - turbine speed varies approx. 100 … 500 rpm (low speed)
 - double or single-regulated
 - mostly Kaplan runner (3 to 6 blades)
 - generator direct-coupled or with a gear box
 - vertical, horizontal or slant arrangement
 - different runner diameters
Possible turbine types for low head application - AXIAL

- Belt Drive Bulb Turbine (BDB)
 \(Q \approx 6 \ldots 25 \text{m}^3/\text{s} \quad H \approx 2 \ldots 4 \text{m} \)

- Bevel Gear Bulb Turbine (BGB)
 \(Q \approx 3 \ldots 45 \text{m}^3/\text{s} \quad H \approx 2 \ldots 12 \text{m} \)
Possible turbine types for low head application - AXIAL

- Compact Axial Kaplan Turbine (CAK)
 \[Q \sim 6 \ldots 60 \text{m}^3/\text{s} \quad H \sim 2 \ldots 12 \text{m} \]

- PIT Turbine (PIT)
 \[Q \sim 20\ldots 100 \text{m}^3/\text{s} \quad H \sim 2 \ldots 12 \text{m} \]
Possible turbine types for low head application - AXIAL

- Compact Axial Turbine (CAT)
 - $Q \sim 3 \ldots 68\,\text{m}^3/\text{s}$
 - $H \sim 15 \ldots 35\,\text{m}$

- Compact S-type Turbine (STP)
 - $Q \sim 3 \ldots 65\,\text{m}^3/\text{s}$
 - $H \sim 15 \ldots 25\,\text{m}$
Possible turbine types for low head application - AXIAL

- Ecobulb-turbines (with direct coupled permanent magnet generator)

- Compact Bulb Turbine (with direct coupled synchronous generator)
Possible turbine types for low head application - AXIAL

HYDROMATRIX®

- A solution for low head sites with existing dam and weir structures
- Available head from 3 m up to 10 m
- Modules of propeller turbine units (Bulb type)
Fish-friendly turbine concept (axial) – some aspects

- Type – Bulb turbine
- low speed
- „large“ runner diameters
Fish-friendly turbine concept – some aspects

- reduced number of runner blades 3 instead of 4 (~50% more space)
- reduced hub size
- reduced blade length (~20% reduction)
Examples and references of low head applications

<table>
<thead>
<tr>
<th>Plant</th>
<th>Country</th>
<th>No</th>
<th>Type</th>
<th>Runner-Ø [mm]</th>
<th>Output [MW/turb.]</th>
<th>Head [m]</th>
<th>Speed [rpm]</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Penig</td>
<td>Germany</td>
<td>1</td>
<td>Belt Drive Bulb</td>
<td>1,950</td>
<td>0.52</td>
<td>2.8</td>
<td>165/500</td>
<td>1997</td>
</tr>
<tr>
<td>Niklashausen</td>
<td>Germany</td>
<td>1</td>
<td>Belt Drive Bulb</td>
<td>1,450</td>
<td>0.21</td>
<td>2.2</td>
<td>208/755</td>
<td>1998</td>
</tr>
<tr>
<td>Talmühle</td>
<td>Germany</td>
<td>1</td>
<td>Bevel Gear Bulb</td>
<td>1,200</td>
<td>0.30</td>
<td>4.2</td>
<td>295/750</td>
<td>2000</td>
</tr>
<tr>
<td>Troja</td>
<td>Czech Rep.</td>
<td>2</td>
<td>Bevel Gear Bulb</td>
<td>2,600</td>
<td>1.00</td>
<td>2.9</td>
<td>145/600</td>
<td>2007</td>
</tr>
<tr>
<td>Sitterthal</td>
<td>Switzerland</td>
<td>1</td>
<td>Vertical Kaplan</td>
<td>1,200</td>
<td>0.44</td>
<td>6.5</td>
<td>333.3</td>
<td>2005</td>
</tr>
<tr>
<td>Vafos</td>
<td>Norway</td>
<td>1</td>
<td>Vertical Kaplan</td>
<td>2,600</td>
<td>4.80</td>
<td>13.3</td>
<td>187.5</td>
<td>2005</td>
</tr>
<tr>
<td>Rott</td>
<td>Austria</td>
<td>2</td>
<td>PIT</td>
<td>2,350</td>
<td>2.60</td>
<td>10.9</td>
<td>205/750</td>
<td>2003</td>
</tr>
<tr>
<td>Gottfrieding</td>
<td>Germany</td>
<td>1</td>
<td>PIT</td>
<td>3,650</td>
<td>5.10</td>
<td>6.1</td>
<td>136/600</td>
<td>2007</td>
</tr>
<tr>
<td>Giessen</td>
<td>Schweiz</td>
<td>1</td>
<td>Vertical CAT</td>
<td>800</td>
<td>0.94</td>
<td>24.4</td>
<td>750</td>
<td>1999</td>
</tr>
<tr>
<td>Healey Falls</td>
<td>Canada</td>
<td>1</td>
<td>Horizontal CAT</td>
<td>2,350</td>
<td>6.30</td>
<td>21.5</td>
<td>276.9</td>
<td>2008</td>
</tr>
<tr>
<td>Zwingen</td>
<td>Switzerland</td>
<td>2</td>
<td>S-Turbine</td>
<td>1,400</td>
<td>0.17</td>
<td>4.2</td>
<td>140/750</td>
<td>1928</td>
</tr>
<tr>
<td>Singatalur</td>
<td>India</td>
<td>4</td>
<td>S-Turbine</td>
<td>3,100</td>
<td>4.76</td>
<td>10.0</td>
<td>150/750</td>
<td>2005</td>
</tr>
<tr>
<td>Nisramont</td>
<td>Belgium</td>
<td>2</td>
<td>Francis</td>
<td>1,086</td>
<td>0.61</td>
<td>12.37</td>
<td>333/1000</td>
<td>2008</td>
</tr>
</tbody>
</table>
Examples and references of low head applications

AND IN UNITED KINGDOM?

- since 1999: 10 different Axial turbines from 0.5 to 4.2 MW
- since 1912: 13 Francis turbines from 0.1 to 7.5 MW (heads below 35m)
- since 1906: 28 Pelton turbines from 0.6 to 106 MW (not low head)
Summary – low head turbine application

- „low“ heads roughly 2 to 35m
- large range of turbine products available (axial type and radial type)
- Often low speed turbines (approx. 100 to 500 rpm)
- low speed direct coupled generator > good but expensive
- Gear box can make a project feasible > reduction generator investment
- „Fish friendly“ turbine concepts
- risks
 - Power loss due to grass or algae
 - Incorrect Design on the intake/drafttube side – „high“ head loss